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Low-Carbon Energy Systems

Exploring the potential of energy
systems, including renewable energy and
carbon capture integration, to achieve
large-scale carbon reduction targets.

It integrates behavioral and cognitive insights into energy system design,
aiming to align technical control with human decision-making patterns.
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Let’s start with a question...

?

What’s the most common element in the universe... but still struggling to find a gas
station?

g
A. Oxygen

B. Nitrogen
C. Hydrogen
D. Elon Musk ==

C. Hydrogen!

Hydrogen makes up ~75% of all baryonic matter... but in most cities, it's easier to find
bubble tea than a hydrogen pump!
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Why hydrogen? Why now?

* In 2022, transportation was responsible for 22% of
global energy-related CO, emissions, making it a
critical sector for decarbonization.

« Hydrogen Fuel Cell Vehicles (HFCVs) offer fast
refueling (<3 minutes), long driving ranges (>500
km), and zero tailpipe emissions, making them ideal
for long-haul and high-utilization applications.

 Unlike battery electric vehicles (BEVs), HFCVs
provide greater operational flexibility and are
particularly effective in regions or use cases where
charging infrastructure or grid capacity is limited.










System Architecture of Hydrogen Mobility A? s el
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How hydrogen integrates energy and transport infrastructure
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PEM Fuel Cell Technology & Performance A?
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Technical foundations of PEM fuel cells powering HFCVs
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Under optimal conditions, modern PEMFCs achieve up to 60% system efficiency, more than double that of traditional combustion
engines (~30%).

Technologies like thin-film membranes, nanocage catalysts, and non-precious metal catalysts (NPMCs) have significantly improved
power density and reduced platinum use.



Durability & Safety of PEM Fuel Cells
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Long-term performance and real-time fault management

Q N Cé}@"i

SPP-QP

Long-term performance of PEMFCs is hindered by degradation
mechanisms: catalyst dissolution, carbon support oxidation, and
membrane thinning.

Monitoring technologies (e.g., SEM imaging, EIS analysis,
polarization testing) help diagnose wear patterns and predict
component failure.

Hybrid methods that combine physical models with machine
learning — such as digital twin + transfer learning frameworks —
improve real-time fault prediction.

Safety systems detect hydrogen leaks, thermal hotspots, and
mechanical faults using smart sensors and adaptive controllers.

Standards like 1SO 14687 ensure hydrogen purity, while control

systems mitigate risks like thermal runaway and over-pressurization.

Miyake, J., Ogawa, Y., Tanaka, T. et al. Rechargeable proton exchange membrane fuel cell containing an
intrinsic hydrogen storage polymer. Commun Chem 3, 138 (2020). https://doi.org/10.1038/s42004-020-
00384-z
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Station types, deployment challenges, and mobility logistics

Hydrogen refueling stations are categorized
into regular, rapid, and mobile formats:

» Regular stations (1-10 kg/day) serve
residential use with long refill times.

» Rapid stations (>100 kg/day) deliver 3—10
minute refueling, ideal for buses/trucks.

* Mobile stations provide on-demand service
in remote or pilot areas.

The core challenge is building out high-
throughput, geographically distributed
infrastructure that ensures reliability,
affordability, and hydrogen purity.

Emerging technologies include 700-bar
dispensers, cryogenic storage, and even
solid-state hydrogen storage solutions.




Challenges in Scaling Green Hydrogen
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Barriers and breakthroughs in electrolytic hydrogen production
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Only 5-6% of global hydrogen is currently green,
mostly produced via water electrolysis.

The major barriers are high capital cost of
electrolysers, operational inefficiency, and water
demand (~9 liters per kg of hydrogen).Solutions
include co-location with renewable energy sites (e.g.,
Japan's FH2R with a 10-MW solar-powered
electrolyser) and use of desalinated or recycled
water.

Modular electrolysers, automated operation, and
dynamic scheduling enable better synchronization
with renewable availability.

Achieving cost parity with grey hydrogen is projected
by ~2030 in regions with high solar/wind resources.

12
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Smart Integration & Roadmap A?
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From Al-driven refueling to V2G and grid services

« Smart hydrogen refueling leverages loT and Al to forecast demand, monitor station health, and dynamically
control electrolysis.

« Example: Toshiba’s loT-equipped stations reduced downtime by 30%.

« HFCVs can become mobile green hydrogen virtual power plants (GHVPPs), participating in ancillary grid
services like frequency regulation and reserve provision.

13
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HFCVs as a nexus for the future clean energy transition

* Hydrogen Fuel Cell Vehicles are not just transport assets; they are mobile energy storage units,
enabling grid stability and renewable integration.

« With advances in PEMFC technology, infrastructure design, Al-based operations, and green
hydrogen production, the vision of a hydrogen-driven mobility system is becoming realizable.

 Remaining challenges include ensuring safety, reducing production costs, harmonizing
standards, and scaling infrastructure.

* Nonetheless, HFCVs represent a foundational pillar in the transition toward a decarbonized,
flexible, and resilient energy ecosystem.

14
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electric vehiclesinto
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Abstract

The integration of solar electric vehicles (solar EVs) into energy
systems offers o promising solution to achieving sustainable mobility
and reducing CO; emissions. This emerging field keverages advances in
photovoltaic technology, EV design, battery innovations and energy
management strategies, In this Review, we explore the potential of
solar EVs to enhance energy efficiency, promote renewable energy

use and contribute to the decarbonization of the power and transport
sectors. We discuss the benefits of incorporating photovoltaic
systems into EVs, such as reduced grid dependency and increased
vehicle autonomy, and examine strategies for optimizing integration,
including advancements In battery technology. The Review also
addresses the challenges of grid adaptation, policy development and
the need for supportive infrastructure, highlighting the importance of
interdisciplinary research and technological innovation. A roadmap
for the sustainable Integration of solar EVs Into energy systems is
presented, offering insights into the future of energy-efficient and
decarbanized transportation.

Dugarrves of Dt 3 Corpene Cngnen g bave S Lvsenere Arvac. 14, UZA Teparmaan of
Frangy Scownce aad Eaginmes g, Soackud Duee Sinack of Seaaruiity, Sontoed thvemeuy Suwford CA

ISR Voo oot of i tonsl Erngranvng. Swrghe oo Sang Lversty Surghon Chen Desatrmes of
Uhectscd ind Dvsron Engmeenr. T Hong Kong Potachee Urverses, Hurg hem, Sowinon, g Xong.
Cuwa. 'yewase of Autavaton, Charmes Acderry of Schrcos, Semy Ovrs "Colage o Bl i Ergres g,
Fchuan vty Cmogrie, C0re Timms b conmbetit shailly Thomms Tesges L Maol Fesgie o,
VorvamWeng Ernunguall  woned gt o bs s s b

Nalirs Apvews Dertoral Lrggrenrmg

15



€ Stanford | Doerr
" N ] School of Sustainability

Thank You! &) Questions are welcome.

Feel free to collaborate with us!

Zhengmao.li@aalto.fi
Alexzhao(@stanford.edu



